Which aspects of NIF implosions could be impacted by kinetic physics? Kinetic Physics Workshop, Apr. 7, 2016 Nino Landen # Summarized as each new platform deployed: Could KE affect NIF ID results and other findings, does result matter and if yes, strategy to resolve #### Example sorted chronologically | Physics
Issue | New Technique
on NIF | New
Platforms
on NIF | End Results | Other Findings | Data examples | Could Kinetic Effects affect End Results or Other Findings? | Does this matter for ignition or how could we avoid/resolve? | |---------------------------------|--|----------------------------|--|---|--|---|--| | X-ray Drive | 192 Beam
Hohlraum | Vacuum
Hohlraum | Drive higher than
expected in vacuum NIF
hohlraums, led to HF
model | M-band fraction bit more than modelled initially | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Yes, high Flux model
decreased flux limiter;
Hard x-rays are NLTE
driven | Change wall
material and/or
capsule dopant
level | | Laser
Coupling | Backscatter and
near backscatter
calorimetry,
imaging and
spectroscopy | Gas-filed
Hohlraum | 15% BS for gas-filled
hohlraums, dominated by
inner SRS with
associated hot electrons | Super hot electrons as
lengthen pulse; DRDs
can be used to extract
SBS variability | | Yes, LPI saturation and growth depend on kinetic effects | Go to lower gas-fill | | Symmetry control | Warm Symcap | Symcap | Better symmetry with CH hohlraum gas-fill, why? | Tent feature
disappeared (sign of
lower contact angle?) | | Maybe, if due to Z/A dependence on LPI | Reduce gas-fill;
foams | | Capsule
Rocket
efficiency | Gated backlit radiography of peak velocity | ConA | Rocket model (Vimp vs
MR) for CH as expected
within error bars | Peak velocity less than
expected especially for
CH(Ge), consistent with
late bangtime; switch to
CH(Si) | 100 - 1000A kinoleton experimental dal e | Not likely, Ge L-shell
EOS or opacity
uncertainties | Reduce dopant
levels by reducing
preheat with pure U
hohlraums or foam
lined | | Spot Imaging | Hard x-ray wall imaging | | Inner spots weak | LEH ring emission
brighter than expected;
Occasional top-bottom
asymmetry? | | Bright ring at LEH may
be due to B fields | No obvious effect;
weaker if open up
LEH, shorter pulse | # Sorted for results probably affected by KE (1) | Physics
Issue | New Technique
on NIF | New
Platforms
on NIF | End Results | Other Findings | Data examples | Could Kinetic Effects affect End Results or Other Findings? | Does this matter for ignition or how could we avoid/resolve? | |---|--|----------------------------|--|--|--|---|--| | X-ray Drive | 192 Beam
Hohlraum | Vacuum
Hohlraum | Drive higher than
expected in vacuum NIF
hohlraums, led to HF
model | M-band fraction bit more than modelled initially | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Yes, high Flux model
decreased flux limiter;
Hard x-rays are NLTE
driven | Change wall
material and/or
capsule dopant
level | | Laser
Coupling | Backscatter and
near backscatter
calorimetry,
imaging and
spectroscopy | Gas-filed
Hohlraum | 15% BS for gas-filled
hohlraums, dominated by
inner SRS with
associated hot electrons | Super hot electrons as
lengthen pulse; DRDs
can be used to extract
SBS variability | O Support of the state s | Yes, LPI saturation and growth depend on kinetic effects | Go to lower gas-fill | | reduced | Dante view
through 100%
LEH at one end | Viewfactor
hohlraum | model is main issue in gas-filled hohlraum | Au bubble larger than
expected, delta 50° -
44.5° scales with pulse
length, reduced wth
quad splitting | | Possible, kinetic effects
(ion-acoustic turbulence)
as laser power increases
on final rise | Use lower gas-fill
where less deficit,
quad splitting | | DD vs DT
surrogacy for
shock timing | Solid DT shock
timing | Solid DT
keyhole | | Hot electron preheat
observable from shock
acceleration in rarefied
DT | 1 | Probably involved in hot electron creation and transport (B fields)? | Reduce hots by low gas-fill | | Outer beam
SBS | | B-doped Au
liner | Ambiguous; reduces late-
time Au SBS, but
sometimes enhances
early SBS? | | AuB Au .: 0 2 4 6 .2 0 2 4 6 Δλ.(Λ) | Kinetic effects could explain unexpected results? | Important to sort
out for low fill
hohlraums for laser
safety | # Sorted for results probably affected by KE (2) | Physics
Issue | New Technique
on NIF | New
Platforms
on NIF | End Results | Other Findings | Data examples | Could Kinetic Effects affect End Results or Other Findings? | Does this matter for ignition or how could we avoid/resolve? | |--|---|-----------------------------------|---|---------------------------------|---|---|--| | Shock flash
timing | Shock flash timing for symcaps | Low LPI NV
Hohlraums | For NV HDC, shock flash-
BT interval time close to
expected | | 63) 63pmi + 74
632
63
63
63
64
64
75 75 75 75 75 75 75 75 75 75 75 75 75 7 | Kinetic effects could
affect shock bangtime;
pToF suggest OK, but
check 4 shock and n+1
shock cases | May not matter to compression phase | | Alternate
Ablator | | Be(Cu) | HF Be coast implosion performs similar to CH(Si), suggesting hohlraum symmetry main issue | More BS (from more Be filling)? | CM MAIN AND 1 | Interpenetration, blow-off could have kinetic component at low fill | Add bit of gas to get out of kinetic regime | | CBET and backscatter correlations | Inner beam glint
detection and
backscatter
polarimetry | | CBET and backscatter varies with polarization | Evidence of amplified glint | 317
315 | CBET saturation a kinetic effect, currently a fitting variable | Reduce gas-fill so
don't need CBET | | Capsule/
Hohlraum
blow-off inter-
penetration | Dual tracer x-ray imaging | Dot tracer
on hohlraum
wall | Seems to fit 2D modelling at 0.6 mg/cc fill | | Ma channel Co channel | Need to go to lower fill for kinetic effects to matter | Keep bit of gas to
stay out of kinetic
regime, or use
foam-liners to tamp
wall | | B fields in
hohlraum
limiting
conduction | Proton radiography | 15 MeV
Proton
source | | | 2 | Besides hohlraum B
fields, could we have B
fields in capsule at
stagnation limiting
thermal conduction? | Measure B isolated from E | # Sorted for results probably affected by KE (3) | Physics
Issue | MAW IACHNIAIIA | New
Platforms
on NIF | End Results | Other Findings | Data examples | affect End Results or | Does this matter for ignition or how could we avoid/resolve? | |---|-----------------------|----------------------------|-------------|----------------|-----------------|---|---| | Reduced
conduction
losses, hotter
fill | External B field | Pulsed Coil | | | Coll bushiraum | Kinetic effects are used for control here | B fields could
reduce conduction,
better for stagnated
capsule margin | | corona | UV Thomson scattering | | | | Probe Colection | Maxwellian tails? | TS could evaluate
kinetic effects (heat
transport) from non-
Maxwellian
features? | | • | l ' | Buried Mo
symcap | | | 1 | Beaming of hot electrons from shared plasma wave? | Go to low gas-fill | ### Sorted for result that might be affected by KE (4) | Physics
Issue | on NIE | New
Platforms
on NIF | End Results | Other Findings | Data examples | Could Kinetic Effects affect End Results or Other Findings? | Does this matter for ignition or how could we avoid/resolve? | |--------------------------|-------------------------|----------------------------|---|--|---|---|---| | Symmetry control | Warm Symcap | Symcap | Better symmetry with CH hohlraum gas-fill, why? | Tent feature
disappeared (sign of
lower contact angle?) | | Maybe, if due to Z/A dependence on LPI | Reduce gas-fill;
foams | | Spot Imaging | Hard x-ray wall imaging | | inner spots weak | LEH ring emission
brighter than expected;
Occasional top-bottom
asymmetry? | | Bright ring at LEH may
be due to B fields | No obvious effect;
weaker if open up
LEH, shorter pulse | | Symmetry control | Cryo Symcap | Symcap | CBET required to tune P2 symmetry in > 0.6 mg/cc gas-filled hohlraums | Late BT; Evidence of hot
spot "chunk" mix with
DD fill; Tent scar growth
changed sign of P4 (-ve
to +ve), reduced P2 | | Amendt Au/gas interface temperature inversion? | Go to lower gas-fill and avoid CBET | | THD and DT
Core shape | | High yield core | Reasonable correlation in shape wth symcap | Evidence of burn quench near filltube location (jet)? | 2 | Anomalous diffusion seeded by fill-tube perturbation? | Reduce fill tube
growth with Be
capsule or
overcoat? | | Fuel rhor | Downscattered
Ratio | | (weaker first shock) as | DSR lower than
expected (truncated
burn?) and only
depends on shock
timing when low coast | 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 | Anomalous ablator/fuel mix? | Need to test if HDC and Be ablators can go to high ρr (dsr) | ### Sorted for result that might be affected by KE (5) | Physics
Issue | New Technique
on NIF | New
Platforms
on NIF | End Results
▼ | Other Findings | Data examples | Could Kinetic Effects affect End Results or Other Findings? | Does this matter for ignition or how could we avoid/resolve? | |------------------------------|--------------------------------------|----------------------------|--|---|---|---|---| | DD and DT
Tion | DT implosion | | Yield correlates with
Tion^4 as expected when
no mix | DT and DT-DD Tion
larger than expected
(truncated burn?) | LEGS | Perhaps if D vs T
separation or Knudsen
effect if local sharp
gradients (Kagan) | Need core Te(t) for more information | | DT Yield | Total Yield by neutron spectrometers | DT
implosion | NIC yield variability due
to mix/large hydrogrowth;
HF and AS yields
clamped at 1e16 for all
capsule thicknesses | Inferred stagnation
pressure and hot spot
rhor less than expected
(truncated burn due to
tent aneurisms?) | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Knudsen not likely at high density; D vs T separation? | Need to resolve;
test alternate to tent | | Equatorial
Shock timing | Re-entrant
keyhole | Keyhole | Timed first 2 shocks improves dsr when low coast | Uncovered ice on LEH
window
Final shock slower than
expected | 1 | LPI on final rise? | Go to lower gas-fill
where final shock
velocity closer to
expected | | Shock flash
rhor | Shock flash rhor for symcaps | D-3He
symcap fills | Pole shock flash ρr close to expected | Pole to equator ρr
variation sometimes
larger than expected,
but gone for NV | 3×10 ⁰ N1008 Downsided | Maybe, but no ρr or timing discrepancy when measured | | | Picket P2 and
m4 symmetry | Reemission
Sphere | Bi sphere | Tuned picket P2 and m4 symmetry | More Picket CBET than expected | | Could be kinetic effect
though picket CBET not
dependent on kinetic
saturation parameter | Use low gas-fill with $\Delta\lambda$ = 0, so little CBET in picket | ### Sorted for result that might be affected by KE (6) | Physics
Issue | New Technique
on NIF | New
Platforms
on NIF | End Results | Other Findings | Data examples | Could Kinetic Effects affect End Results or Other Findings? | Does this matter for ignition or how could we avoid/resolve? | |--------------------------------------|--------------------------------|----------------------------|---|---|-------------------|--|--| | Total hot
electrons at
capsule | Hard X-ray
Capsule Imaging | | Hot electron preheat (if
during peak power) within
tolerable level for NIC
design (< 5% adiabat
increase) | HF preheat 10x greater, attributed to higher gasfill, more foot power | 10m | B field might collimate
hot electrons for other
designs not checked by
hard x-ray imaging | Use low gas-fills
where superhots
100-1000x less | | Hot spot core
size and
shape | Unscattered
Neutron Imaging | _ | Follows x-ray core shape and size | Toroidal limb brightened
shapes for many
campaigns suggesting
P2 swing, even without
CBET | • | Not CBET specific | Eliminate P2 swing
by careful tuning,
more radiography
near BT | | LEH closure | LEH x-ray imaging | | Less LEH closure than
HYDRA calculations, so
overestimating Tr | Evidence of Au/gas RT
growth at azimuthal
modes 24-28 | Far outers Inners | Could be mix per
Amendt, changing heat
conduction | Not likely as high azimuthal modes, smoothed out | | Hot-spot mix | Core dopant spectrosopy | CH(Ge, Cu) | Mix due to ablation front
seeded growth; Evidence
for CH(Ge)/ inner CH Mix | Impurity continuum
emission can be used to
extract hot spot mix | | Could be anomalous diffusion as current models do not predict atomic mix | Go to low Ablation
Front growth factor
(Be or Be overcoat,
adiabat-shaped
pulse) | | P2 Shock
symmetry | Re-entrant dual axis keyhole | Keyhole +
mirror | Symmetrized shock P2 | | 1 | Possibly, if NLTE emission issue | Retune by 2nd shock cone fraction | ### Sorted for result that might be affected by KE (7) | Physics
Issue | New Technique
on NIF | New
Platforms
on NIF | End Results | Other Findings | Data examples | Could Kinetic Effects affect End Results or Other Findings? | Does this matter for ignition or how could we avoid/resolve? | |--|-----------------------------|--|--|--|---------------|---|---| | Fuel size and shape | DS Neutron
Imaging | Layered DT | Fuel mass compactness less than expected (mixed further out with ablator?) | | | Ablator-fuel diffusion reducing final fuel rhor and dsr? | Test limits of convergence in other ablators (HDC, Be) | | In-flight
capsule polar
symmetry | Backlit 2D capsule imaging | 2DConA | NIC hohlraum was too
short (P ₄ asymmetry
biased by tent) | Tent leads to > than expected instability growth | 0 | Only if non-local heat
conduction alters RT
growth/stabliization of
seeded tent perturbation | Use tent alternate;
Longer hohlraum or
P4 shim on capsule | | P4 Shock
symmetry | Re-entrant tri axis keyhole | Keyhole +
dual mirror | Symmetrized shock P4 with longer hohlraum | | 1 | Relative propagation and CBET of inners and outers | Retune with
different length
hohlraum or P4
shim on capsule | | Improved symmetry control | | Rugby
hohlraum | Symmetry with little reliance on CBET | LEH plasma forced repointing;
Reduced e- preheat (less filling or split beams)? | | Possible anomalous LEH plasma expansion? | Retest on latest low
gas-fill designs if
cylinders have
issues | | 1D implosion performance | | Low CR
exploding
pusher
implosion | 1D performance at CR = 5 | Spitzer conductivity explains hot spot profile | | Low CR implosion says
not, but need tests at
even higher Te | Could affect ignition margin | # Sorted for result that might be affected by KE (8) | Physics
Issue | New Technique | New
Platforms
on NIF | End Results ▼ | Other Findings | Data examples | Could Kinetic Effects affect End Results or Other Findings? | Does this matter for ignition or how could we avoid/resolve? | |---|--|----------------------------|---|--|--|--|--| | Alternate
Ablator | | HDC | Similar performance to CH; evidence of more filltube and AF growth seeded mix | HDC could retain µstructure on release into DT even above 7 Mbar (OMEGA); explain low dsr? | | Latent heat time-
dependent effects? Orth
spallation effect? | Could set lower 1st
shock P and hence
adiabat limit for
HDC; Higher picket
AS CH may be OK | | Hot electron production and transport during window burnthrough | 50 keV x-ray imaging of high Z ball | | Picket hot electrons
mitigated by longer toe,
lower picket power | Beaming of hot electrons possible, attributed to collective outer cone SRS | 1 | B field could still play a role? | Stay below
beaming threshold;
check for beaming
on final rise
(Dewald) | | Picket CBET
more than
expected
based on
reemit data | X-ray imaging of transmitted beam | Quartraum | Confirms greater than expected CBET during picket | Variability in Outer
beams post CBET | Laser Intensity JA=8A N140706 | Filamentation issues? | Avoid foot CBET by zeroing wavelength differential | | Gas-filled
hohlraum
energy
balance | Tracer x-ray
spectroscopy for
Te | Dot tracer | Peak Te 0.5 keV hotter
than standard model in
gas-filled hohlraum, and
cools more slowly | Dot motion is less than expected (hydrocoupling?) | Notice of the second se | Kinetic effects will matter more as density drops | Add bit of gas to get out of kinetic regime | | Divot growth | | Capsule wth | See Ge emission at divot with current broadband imaging | Also see feature ascribed to filltube | • | Anomalous diffusion possible? | Be-coated HDC or
CH? Check for
HDC and Be
microstructure
growth | ### Sorted for result that might be affected by KE (9) | Physics
Issue | on NIE | New
Platforms
on NIF | End Results | Other Findings | Data examples | Could Kinetic Effects affect End Results or Other Findings? | Does this matter for ignition or how could we avoid/resolve? | |--|---|------------------------------|--|---|----------------------------|---|--| | Peak velocity
growth | _ '. ' | Ar and Cu
doped
symcap | AF Growth to peak
velocity close to
predicted (but saturated) | Growth at pole is 2x less than equator (due to Mband VF?); Have measure of ablator ρr from Cu spectra | 1 | Related to outer beam NLTE M-band strength? | Measure M-band at capsule (Dewald) if concerned | | Interface
growth | Backlit DT layered
capsule on
keyhole | Layered
HGR | Growth due to feed-out, feed-in close to predicted at mode 60 | | Target image from NY83305 | Anomalous diffusion exacerbating high mode mix? | Need to measure
higher mode
interface growth
(target-mounted
slit) | | 3D structure
and flows in
hot spot | Ultrafast gated imaging | | Evidence of finer scale flows | | • | Turbulence vs viscosity issues (kinetic related)? | Need better data:
Penumbral few µm
imaging onto SLOS
10 ps detector | | X-ray preheat control | | Pure U
hohlraum | X-ray preheat fraction
drop as expected;
greater than expected
velocity increase; HDC
IFAR greater | Stagnation feature for
Au but not for U | Paradic - 18 and (Paradic) | Is difference in
stagnation due to Z/A
differences (seems
unlikely)? | U hohlraum is favored | | Au corona
hohlraum
energy
balance | Au L-shell x-ray
spectroscopy for
Au Te | for Au | Au LEH lip emission appears hotter than bubble | | | Sign of B field or other mechanism limiting thermal conduction at LEH lip? | Does not seem to stop symmery tuning | ### Sorted for result that might be affected by KE (10) | Physics
Issue | New Technique
on NIF | New
Platforms
on NIF | End Results | Other Findings | Data examples | Could Kinetic Effects affect End Results or Other Findings? | Does this matter for ignition or how could we avoid/resolve? | |---|--|--|---|--|---------------|--|--| | LEH closure
rate and
delivered CF
vs t | Gated LEH x-ray imaging | | See time-dependent LEH closure close to expected, and expanding Au bubble | See ≈ mode 64 structure
at beam locations for
moderate gas-fill | | Kinetic effects explaining
mid-mode structure?
Need more data when
seeded | Mid-modes do not
matter to symmetry,
but is it sign of
energy sink? | | High adiabat
path to 1D | | Thin DT
layer in
subscale
HDC | P2(t) as calculated, low
BS, ready for DT shot | | 2 | Awaiting clean DT shot | | | Filltube
growth | Backlit
radiography of
filltubes | Cantilevered filltubes | Bubble vs spike at
filltube; cantilevered
filltube shadowing effects
close to expected | Other growth features
(shadowing effects
perhaps upon UV
curing)? | 1 | No, unless anomalous diffusion | O barrier for CH | | Preheat and wall blow-off control | | Mid-Z foam
lined
hohlraum
(ZnO) | 3x X-ray preheat fraction drop | Only 15% drop in thermal x-rays | | NLTE physics, and future
results on SBS mitigation
in Mid Z/Low Z foam may
be dependent on kinetic
effects | | | Hot spot
formation | Wetted Foam implosion | Wetted foam
HDC
capsule | | | | By their absence; goes
to more hydrodynamic
shock flash conditions | Tests performance vs hot spot convergence ratio | #### Sorted for result that might be affected by KE (11) | Physics
Issue | New Technique | New
Platforms
on NIF | End Results | Other Findings | Data examples | affect End Results or | Does this matter for ignition or how could we avoid/resolve? | |---|------------------------|----------------------------|--|----------------|--|----------------------------|--| | Hotspot n _e
and T _e (t)
check | l '. | Doped
symcap | Must be gated to see 3-1
He-like vs Li-like ratio | | | | Check Te by continuum slope w/o dopants | | Hat snot Mix | Reaction
Br(d,2n)Kr | Br-doped capsule | | | Nuclear reactions (n, a, d, t) cause tracer activations OR at front collection collection | leaneitive to childring ve | Avoid hot spot
cooling by mid Z
materials | # Sorted for result not likely affected by KE (12) | Physics
Issue | New Technique
on NIF | New
Platforms
on NIF | End Results | Other Findings | Data examples | Could Kinetic Effects affect End Results or Other Findings? | Does this matter for ignition or how could we avoid/resolve? | |--|---|----------------------------------|--|---|--|--|---| | Capsule
Rocket
efficiency | Gated backlit radiography of peak velocity | ConA | Rocket model (Vimp vs
MR) for CH as expected
within error bars | Peak velocity less than
expected especially for
CH(Ge), consistent with
late bangtime; switch to
CH(Si) | 100 - NYTONA simulations experimental data experimental data experimental data experimental data ex | Not likely, Ge L-shell
EOS or opacity
uncertainties | Reduce dopant
levels by reducing
preheat with pure U
hohlraums or foam
lined | | Capsule
Dopant | | Polymer
capsule
implosions | | O uptake sensitivity for GDP exposed to light | 1 200 | Ge L shell opacity issue uncertainty? | Lower dopant
levels and use pure
U hohlraum; Coat
CH capsules with
few nm barrier | | Drive and preheat optimization | | Au-lined DU
hohlraum | Increased peak drive by ≈10% as expected | | 130 Au Peak Tr 310 (eV) 290 - 270 0.5 1.1 1.3 1.5 1.7 Absorbed Laser Energy [Mi] | No, Marshak wave effect | Useful; Pure U
even better C.E. | | Capsule
Rocket
efficiency | Streaked backlit radiography of peak velocity | ConA | Confirmed gated data | More shell
decompression than
expected when coasting | 1 | Not likely; EOS or 3D issue? | Push longer | | Residual KE,
symmetry
swings, fuel
uniformity | | | on evidence of polar | Observe semi-random phase for mode 1 fuel ρr asymmetry | | No, mode 1 is an imbalance, unless some chaotic behavior driven by kinetic effect? | If mode 1 layer-
specific, will it still
show up in lower
convergence
layered implosions? | # Sorted for result not likely affected by KE (13) | Physics
Issue | New Technique
on NIF | New
Platforms
on NIF | End Results | Other Findings | Data examples | Could Kinetic Effects affect End Results or Other Findings? | Does this matter for ignition or how could we avoid/resolve? | |---|---|-------------------------------------|---|--|--|---|---| | X-ray vs
gamma
burnwdths | Streaked core
emission | | Gamma burnwidths greater than expected | X-ray shorter than gamma burnwidths for higher yields | 6
4
2
0
15.7 15.9 16.1
t (ns) | Not likely, either GRH overestimate or non-synchronous stagnation | Check for opacity issues with higher energy x-ray channels | | , | Re-entrant tri axis keyhole | Keyhole +
dual rotated
mirror | See little m2 and m4 shock asymmetry | | 1 | Relative CBET, 23° vs 30°, in foot | Rebalance 23° vs
30° power if
necessary | | In-flight
capsule
azimuthal
symmetry | Backlit 2D capsule imaging | 2DConA
Pole | M-mode in-flight asymmetries are small as expected | | | No, lowest intrinsic azimuthal mode is strongly smoothed out | Tweak 23 vs 30° cone fraction if needed | | 2D Ablation front growth | Backlit
radiography of
rippled capsules
in keyhole
geometry | HGR | Ablation front growth
rates and dispersion
close to expected, CH
and HDC, LF, HF, AS | AF dispersion curve
dictated by ablative
stabilization during 1st
shock transit, favoring
Be most, HDC least | | No anomalies so far | Be-coated HDC or
CH? Check for Be
microstructure | | Residual bulk
flows in hot
spot | Doppler shift
analysis of nToF, x-
ray core image P1
motion analysis | P1 driven
symcap and
DT | Expected correlation between P ₁ ρr, directed velocity and P ₂ Tion | Observe preferential
direction for mode 1 bulk
flows, but could be partly
instrumental | | Intentional P1 acted as expected; but random P1 still a mystery? | Check if mode 1s
persist for lower
convergence DT
layer or wetted
foam P1 | # Sorted for result not likely affected by KE (14) | | | | | | , | | | |---|---|----------------------------------|--|---|--|---|--| | Physics
Issue | New Technique
on NIF | New
Platforms
on NIF | End Results | Other Findings | Data examples | Could Kinetic Effects affect End Results or Other Findings? | Does this matter for ignition or how could we avoid/resolve? | | X-ray preheat control | | Mid-Z lined
hohlraums
(Cu) | 2x X-ray preheat fraction drop as expected | Only 15% drop in
thermal x-rays; increase
in SBS | 1 Section 1 | NLTE x-ray emission physics | Check again with
more relevant low
density foam liner
designs | | 3D Ablation
front growth of
native
roughness | Backlit
radiography of
native roughness
including tent | Ultimate
HGR | Growth of tent 3x higher than initially predict; some variability (lift-off angle dependent) | Lift-off angle 2x more;
Unexpected capsule
build features (light and
UV cure activating O non-
uniform uptake)? | | Difficult to model hydrodynamics | Use tent alternate;
test for seed
mitigation with O
barrier on CH | | Shock P ₁ /m ₁
symmetry | 5-axis keyhole | 4 mirror
keyhole | Correlation between laser and shock P ₁ ; shock m ₁ small as expected | VISAR reflection off LEH
window provides
prepulse detection | N-pole P-mole Equator 5-pole M-mode = 135" | Not likely | Laser prepulse
monitored more
closely | | Early time
glint on
capsule in NV
hohlraum | Early-time pole reemit | | Not specular, not a midmode threat | | | No issue so far | Check for new designs (function of gas-fill) | | Relative
Ablator EOS | Four sample ID impedance match planar package | | Steady shock to 2%; | Sensitive to AI EOS standard | Be GDP Aluminum Ouartz HDC | Not likely | May change
margins a bit? | #### Sorted for result not likely affected by KE (15) | Physics
Issue | New Technique on NIF | New
Platforms
on NIF | End Results | Other Findings | Data examples | Could Kinetic Effects affect End Results or Other Findings? | Does this matter for ignition or how could we avoid/resolve? | |------------------------------------|---|----------------------------|--|---|---------------|---|---| | Trough symmetry | | Thin ablator keyhole | | | 1 | No or little CBET | More data needed | | Trough symmetry | Backlit Foamball;
6 quad BABL | Foamball | Accuracy sufficient for 4% trough P4 inference, but surrogacy? | P2 asymmetry has
reversed sign of preshot
(but only 5%) | | No or little CBET | Better data,
backlighting shock
in actual CH shell
(Hall)? | | Fuel shape
and ρr
uniformity | THD Point
Projection ARC
Compton
radiography | THD fill | | Artefacts on hGXD led to ERASER | | Not likely for low modes if no CBET | Await measurements | | Fuel shape
and ρr
uniformity | Self Compton
Scatter imaging | | | Can apply analysis
techniques from
downscattered neutron
imaging (Casey) | | Not likely for low modes if no CBET | Await
measurements |